An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity

نویسندگان

  • Carsten Carstensen
  • Joscha Gedicke
چکیده

This paper presents a combined adaptive finite element method with an iterative algebraic eigenvalue solver for a symmetric eigenvalue problem of asymptotic quasi-optimal computational complexity. The analysis is based on a direct approach for eigenvalue problems and allows the use of higher-order conforming finite element spaces with fixed polynomial degree. The asymptotic quasi-optimal adaptive finite element eigenvalue solver (AFEMES) involves a proper termination criterion for the algebraic eigenvalue solver and does not need any coarsening. Numerical evidence illustrates the asymptotic quasi-optimal computational complexity in 2 and 3 dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Rate and Quasi-Optimal Complexity of Adaptive Finite Element Computations for Multiple Eigenvalues

In this paper, we study an adaptive finite element method for multiple eigenvalue problems. We obtain both convergence rate and quasi-optimal complexity of the adaptive finite element eigenvalue approximation, without any additional assumption to those required in the adaptive finite element analysis for the boundary value problem. Our analysis is based on a certain relationship between the fin...

متن کامل

Adaptive Finite Element Algorithms for the Stokes Problem: Convergence Rates and Optimal Computational Complexity

Although adaptive finite element methods (FEMs) are recognized as powerful techniques for solving mixed variational problems of fluid mechanics, usually they are not even proven to converge. Only recently, in [SINUM, 40 (2002), pp.1207-1229] Bänsch, Morin and Nochetto introduced an adaptive Uzawa FEM for solving the Stokes problem, and showed its convergence. In their paper, numerical experimen...

متن کامل

Adaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation

An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...

متن کامل

An Adaptive Inverse Iteration Fem for the Inhomogeneous Dielectric Waveguides

We introduce an adaptive finite element method for computing electromagnetic guided waves in a closed, inhomogeneous, pillared three-dimensional waveguide at a given frequency based on the inverse iteration method. The problem is formulated as a generalized eigenvalue problems. By modifying the exact inverse iteration algorithm for the eigenvalue problem, we design a new adaptive inverse iterat...

متن کامل

Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations

We consider a new adaptive finite element (AFEM) algorithm for self-adjoint elliptic PDE eigenvalue problems. In contrast to other approaches we incorporate the inexact solutions of the resulting finite dimensional algebraic eigenvalue problems into the adaptation process. In this way we can balance the costs of the adaptive refinement of the mesh with the costs for the iterative eigenvalue met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2012